Inflammatory processes impair nerve regeneration in old age
10/19/2018 · FLI Leibniz Institute on Aging - Fritz Lipmann InstituteThe regenerative capacity of the nervous system declines during aging; the risk to develop nerve pathologies increases. Researchers of the Leibniz Institute on Aging (FLI) in Jena investigated the regeneration of aging nerves in collaboration with colleagues from the university hospital Jena and the University of Bonn. They found that a disturbed immune response leading to chronic inflammation is significantly involved in this. Moreover, the researchers demonstrated the efficacy of an anti-inflammatory therapy to improve nerve regeneration and identified promising aging markers that are currently being tested as therapeutic targets.
New function of “kidney-gene” – WT1 plays a role in the central nervous system and controls movement
10/16/2018 · FLI Leibniz Institute on Aging - Fritz Lipmann InstituteThe WT1 gene fulfills a central role in the development of a healthy, proper functioning kidney. Mutations in WT1 lead to impairments in kidney development and cause Wilms tumors, a pediatric kidney cancer. Researchers of the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena have now discovered a further important function of WT1. It is also active outside the kidneys in the central nervous system and is involved in controlling movement. If the gene is missing in the spinal cord, locomotor aberrancies occur. The results have now been published in Life Science Alliance.
Increased Blood Flow triggers Liver Regeneration
10/16/2018 · DDZ German Diabetes CenterThe liver is one of the most important human organs. It is essential for metabolism, blood detoxification and the functioning of the immune system. Moreover, the liver is the only organ which can fully regenerate its cell mass within a few weeks after more than half of the organ has been removed. The researchers led by Professor Eckhard Lammert have discovered that it is due to increased blood flow and subsequent dilation of the liver vasculature that the liver receives signals for growth. The signals come from the cells of the blood vessels that react to the mechanical stimulation. The publication is based on the findings published in 2001 that blood vessels affect organs in their function and growth (Lammert et al., Science 2001).
Issue 08
Healthy Ageing - Forschung aus erster Hand
.
Bioactive compound improves memory
.
Better understanding cardiovascular diseases